g2(f2(x, y), z) -> f2(x, g2(y, z))
g2(h2(x, y), z) -> g2(x, f2(y, z))
g2(x, h2(y, z)) -> h2(g2(x, y), z)
↳ QTRS
↳ DependencyPairsProof
g2(f2(x, y), z) -> f2(x, g2(y, z))
g2(h2(x, y), z) -> g2(x, f2(y, z))
g2(x, h2(y, z)) -> h2(g2(x, y), z)
G2(h2(x, y), z) -> G2(x, f2(y, z))
G2(f2(x, y), z) -> G2(y, z)
G2(x, h2(y, z)) -> G2(x, y)
g2(f2(x, y), z) -> f2(x, g2(y, z))
g2(h2(x, y), z) -> g2(x, f2(y, z))
g2(x, h2(y, z)) -> h2(g2(x, y), z)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
G2(h2(x, y), z) -> G2(x, f2(y, z))
G2(f2(x, y), z) -> G2(y, z)
G2(x, h2(y, z)) -> G2(x, y)
g2(f2(x, y), z) -> f2(x, g2(y, z))
g2(h2(x, y), z) -> g2(x, f2(y, z))
g2(x, h2(y, z)) -> h2(g2(x, y), z)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G2(x, h2(y, z)) -> G2(x, y)
Used ordering: Polynomial interpretation [21]:
G2(h2(x, y), z) -> G2(x, f2(y, z))
G2(f2(x, y), z) -> G2(y, z)
POL(G2(x1, x2)) = x2
POL(f2(x1, x2)) = x2
POL(h2(x1, x2)) = 1 + 2·x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
G2(h2(x, y), z) -> G2(x, f2(y, z))
G2(f2(x, y), z) -> G2(y, z)
g2(f2(x, y), z) -> f2(x, g2(y, z))
g2(h2(x, y), z) -> g2(x, f2(y, z))
g2(x, h2(y, z)) -> h2(g2(x, y), z)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G2(h2(x, y), z) -> G2(x, f2(y, z))
G2(f2(x, y), z) -> G2(y, z)
POL(G2(x1, x2)) = 2·x1
POL(f2(x1, x2)) = 2 + 2·x1 + 2·x2
POL(h2(x1, x2)) = 2 + 2·x1 + 2·x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
g2(f2(x, y), z) -> f2(x, g2(y, z))
g2(h2(x, y), z) -> g2(x, f2(y, z))
g2(x, h2(y, z)) -> h2(g2(x, y), z)